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I. Introduction

In Chapter 2 a state space formulation of the Ho, optimal control problem is given.

Assuming a finite interval of control, the problem of synthesizing a finite-interval Ho,

controller is converted into an optimization problem in which a parameter occurring in a

boundary value problem needs to be maximized. An optimality condition for the maxi-

mization of this parameter is given. The proposed method makes use of the observer-based

parametrization of all stabilizing controllers. An example is worked out.

An important problem in flight control and flying qualities is the approximation of a

complex high order system by a low order model. In Chapter 3, for a given reduced order

model, we define the correlation measure between the plant and the model outputs to be the

minimum of the ratio of weighted signal energy to weighted error energy. We give a criterion

for the evaluation of the correlation measure in terms of minimization of a parameter

occurring in a two-point boundary value problem. Once the correlation measure for a given

reduced order model can be evaluated, a nonlinear programming algorithm can be used to

select a model which maximizes the correlation between the plant and model outputs. The

correlation index used can be regarded as an extension of the H00 performance criterion

to the finite-interval time-varying case. However, the usual Ho, problem seeks an optimal

controller, whereas our problem is to select the reduced order model matrices which give

the best correlation index. We also give an expression for the variation of the correlation

owing to parameter variations and pose a robust model reduction problem. The utilization

of the theory is demonstrated by means of some examples. In particular, a problem which

involves the reduction of an unstable aircraft model with structural modes is worked out.

The computations for Chapter 3 were performed by Marc Steinberg, an engineer with the

Flight Control group.
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II. Synthesis of Finite-Interval H., Controllers

by State Space Methods

1. INTRODUCTION

The H,, optimal control theory has been pioneered by Zames [1] and important con-

tributions have been made by Francis and Doyle [2,3]. Recent work [4] indicates that the

theory has important applications in the design of flight control systems.

In this chapter a variant of the H.. problem is considered in terms of state space

formulation. Optimization routines are needed for the synthesis of the final controller.

The formulation is based on considering optimal control problems with finite terminal

time in which the cost is a quotient of two definite integrals.

Other authors have considered the H. problem from different points of view. In [5]

a parametrization of all stabilizing controllers that achieve a specified Ho' norm bound

is given in a specialized case. The computation of the controller involves the solution of

two Riccati equations. This result has been extended to the general case in [6]. In [7] the

Ho. problem is solved by introducing a generalized algebraic operation called conjugation.

The approach again yields two Riccati equations whose solution leads to the synthesis of

a controller. In [8] a certain LQG problem with a side constraint on the Ho-norm of

the closed loop transfer function is solved. In this approach it is necessary to solve three

coupled Riccati equations. In special cases these three equations can be reduced to two

Riccati equations.

Our approach results in a two-point boundary value problem. The approach has the

advantage of being applicable to time-varying systems with observer-based controllers and

dynamic controllers. Ref. 9 contains one such application in which the objective is to

maximize the disturbance rejection capacity of a time-varying linear system. Also, given

a controller it is important to know the performance measure of the controller. For the

2
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general time-varying system with a given controller, the parameter \ of Section 3 gives a

measure of the performance of the controller.

Our time-domain approach has several advantages even in the case of time-invariant

systems. First of all, it provides an alternate new approach to the computation of finite-

interval H, controllers. The Ho, algorithms usually cannot handle time domain specifi-

cations. In our optimization algorithm it is possible to include time domain constraints.

Also time domain approach is convenient for handling parameter uncertainties.

3
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2. STATE SPACE FORMULATION OF THE Ho, PROBLEM

The standard Hc,, problem can be stated with reference to Fig. 1 (p. 18). In Fig. 1

w, u, z, and y denote the exogenous input (command signals, disturbances, sensor noises

etc.), the control input, the output to be controlled, and the measured output, respec-

tively. The plant G(s) and the controller K(s) are assumed to be real-rational and proper.

Partition G as

G Gli G12
GG21 G22"(1

The equations corresponding to Fig. 1 are

z=Gjjw+G12u, y=G21w+G 22u, u=Ky. (2)

The standard Ho, problem is to find a real-rational proper K which minimizes the H0,

norm of the transfer matrix from w to z under the constraint that K stabilize G.

In terms of state space equations G(s) is written as

= Ax + Bjw + B2u

z = Cjx + D 11 w + D 12u (3)

y = C 2x + D 21w + D22u.

Doyle [10] showed that every stabilization procedure can be realized as an observer-based

controller by adding stable dynamics to the plant. The realization of the observer-based

controller is shown in Fig. 2 (p. 18) where the stable dynamics added is represented by

Q(s), with Q(s) proper and I - D 22 Q(oo) invertible. In Fig. 2, F and H are chosen such

that A + B 2F and A + HC2 are stable. Assume that Q(s) is described by the minimal

representation

= q + Btg, u 2 = Cq + b . (4)

4
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Following the notation of [11], define the following quantities.

01 = -H - (B2 + HD22)(I - bD 22 )- ' b

2 = b+ bD 2 2 (I-DbD2 2)-'D

71 = F + (I - bD 22 )-Ib(C2 + D22F)

7 2 = -(I- DD 22 )- C

I I = A + HC 2 + (B2 + HD22 )71
(5)

= A + B2F - Pi(C2 + D22F)

a 12 = (B2 + HD22)7 2

a21 = -#l 2(C2 + D22F)

a 22 = A - BD 2272

,K = -(I - D)D22)-If).

Then the closed loop system is given by

(ll A 12 A13 )(i+ (B,)1
-- = A21 A22 A 2 3 )t-+ B 2  W, (6)

1 A3 2 A33  B3

y = (I - D22+)-I [C2X + D 22 71 i + D22r2q + D 21w], (7)

z = C x + D1w + D 1 2(1i + 7 2q + Ky), (8)

5
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where
A 11 = A + B 2 (I - D2K)-lC2

A 12 = B 27 1 + B 2 (I - D22K)-'D2271

A 13 = B272 + B 2 1(I - D22#)-lD2272

A 21 = fl(I- D22 C2

A 22 = cell + #,(I - D22K)-lD227f

A 23 = C12 + #,(I - -
(9)

A 3 1 = /22(1- D 2 2 K)- 1 C 2

A 32 = &21 + /32(1- D22 )- 1D2 2 71

A33 = t22 + /2(1 - D22K)-lD22t2

B, = B, - B2 D(I - D22K)-'D21

B 2 = -(H + B2D)D 21

B 3 = tD 21.

Consider equations (4)-(9). Now the H. control problem is to find among all sets of

matrices A, B, C, and D which give a stable transfer matrix from g to u2 (see Fig. 2) one

for which the Hco-norm of the transfer matrix from w to z is minimized.

The above problem is equivalent to the following problem. Suppose A is selected to

be a stable matrix. For fixed A, B, C, and b, let

A =iffo0w(t)w(t)di (10)
wrfo z *(t) z(t) dt'

where the superscript * denotes matrix or vector transpose. Now find the values of A, b, (,
and b which make A a maximum. The initial conditions for the variables z, &, and q axe

of course zero.

It is clear that the Hoo-norm of the transfer function from w to z is 1/v, and the

objective is to minimize the Hoo-norm by choosing a controller.

6
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The input w(t) considered in the above problem is an element of L2(0, oo). However,

in many physical systems, the control interval is finite. For example, in the case of an

advanced fighter, most maneuvers are accomplished in the course of a few seconds. Thus,

in the next section we consider an approximate H., problem in the sense that the control

interval will be finite. If the integration limit T in, say equation (13), approaches infinity,

then v3A is the inverse of the Hoo-norm of the transfer matrix from w to z. For lack of a

better term, we call this a finite-interval H. problem. On the other hand, the problem

will be more general in the sense that time-varying linear systems and a broader class of

performance indices will be considered in Section 3.

To motivate the problem considered in the next section, let x = (x*, i*, q*)*. Equa-

tions (6)-(8) are written as

=Ax+Bw, x(0)=0, w=w, (11)

z = z = Cx +Dw, (12)

where the matrices A, B, C, and D depend on A, B, C, and D. Let the control interval be

[0, T]. For fixed A, B, C, and f with A being stable, let

S= inf fwT w*(t)w(t)dt (13)
'foT *(t)z(t) dt

Using an optimization routine, find the matrices A, B, C, and D for which A is maximized.

3. OPTIMALITY CONDITIONS

In this section we develop conditions for determining A in a general case which sub-

sumes the problem considered at the end of Section 2. These conditions will be developed

for time-varying systems. The system equations are given by

x = A(t)x + B(t)w, x(to) = 0. (14)

7
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The problem on hand is to select w which minimizes the performance index given by

SfT{Ix*Rx + xR 2w + wR 3w} dt
JAw) to22(15)fT{w - xWX + X*W2W + Iw"W 3w} dt(

Note that the performance index given by (13) can be regarded as a special case of (15) since

z = Cx+Dw. To get the performance index of (13), set R1 = R2 = 0,W 1 = C*C,W 2 =

C*D, and W 3 = D*D in equation (15). In (15) we assume that the weighting matrices

R 1 , R 3 , W1 , and W 3 are symmetric and the integrands of both the numerator and the

denominator are nonnegative for each w(t). Fuirther, we assume that there is some w(t)

for which the denominator is positive. Let A = infw J(w). We also assume that R3 - AW3

is nonsingular.

Cost functionals of the form of (15) are the subject matter of this report. For the sake

of completeness, we derive the necessary conditions satisfied by an optimal w(t).

Since the infimum of (15) is A, we have

T1
{-x*Rix + x*R 2w + 2w*R3 w} dt

I *Wx + XW 2 W+ 1w W3 w} dt > 0 (16)

for all (w, x) which satisfy (14). Thus, if w minimizes the cost functional in (15), it also

minimizes the alternate cost functional

T 1 1

J,(W) =1it2 *T(R - AWI)x + x*(R 2 - AW2 )w + jw(R3 - AW3)w} dt. (17)

The necessary conditions for optimal w(t) can be stated as follows.

THEOREM 3.1. Consider the system given by (14) with the performance index given by

(15). If w(t) minimizes (15), then there exists an adjoint vector O(t) such that

dO
d= -A-0 + (RI - AW,)x + (R2 - AW2)w, O(T) =0, (L)

8
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and

w(t) = (R 3 - AW 3) - f {B*t - (R 2 - AW2 )*x}. (19)

Proof. To give a short proof, consider the alternate cost functional given by (17). By

the maximal principle [121, the Hamiltonian is given by

H(0, x,w) = tk*(Ax + Bw) - f1x*(RI - AWI)x

+x*(R2 - \W 2)w + w(R 3 - AW 3 )W}. (20)

The adjoint vector tk(t) satisfies
O H (21)

dt ft

with the transversality condition O(T) = 0. Equation (18) is obtained from (21). Optimal

w(t) is obtained by setting OH/Ow = 0 and is given by (19). 0

Let Vi = Ri - AW, for i = 1, 2,3. We have a two-point boundary value problem given

by

(ic) A ( -BV3 'V2 BV31B* )(X) ,(22)BV2V2'B
with

x(to) = 0, O(T) = 0. (23)

We now show that the minimum value of (15) is the least positive A for which (22)-(23)

a solution with f '{x*WIx + x*W2w + w*W 3 w} dt > 0.h a s a s o u i n w t t 22

THEOREM 3.2. Consider the boundary value problem given by (22) and (23). Let A

be the least positive value for which the boundary value problem has a solution with

fT{ x*WIx + x*W 2w + w*W3w} dt > 0, where w(t) = V-'f{B* - V2x}. Then A is

the minimum value of (15) and w is an optimal input.

Proof. From Theorem 3.1 it follows that if w(t) is optimal, then the boundary value

problem (22)-(23) is satisfied for the optimal value of A. Now suppose the boundary value

9
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problem is satisfied for some \ such that the corresponding solution (x, k) gives the de-

nominator of (15) a positive value (with w(t) A V-11BB*P - V~x}). We show that the

performance index corresponding to (x, b) is A.

Let (.,.) denote the standard inner product in a real Euclidean space. We have

(R 3 - AW 3 )w = B*O- (R 2 - AW 2 )*x.

Thus

TT

S{(w, R3w) - A(w,W 3w)} dt {(w,B4')-(w,Rlx)+A(w,W2x)}dt. (25)

Since Bw = k - Ax, the first integral on the right side of (25) isT T
(w, B*) dt {(k, )-(Ax, ,t)}d. (26)

After integrating the right side of (26) by parts and utilizing x(to) = O,(T) = 0,

(w, B*O) dt = J{(x, Rix) - (x, R 2w) + A(x, Wix) + A(x, W 2w)} dt. (27)

Combining equations (25) and (27), we getT T
R1(x,Rx) + 2(x, R 2 w) + (w, R3 w)} dt = A f{(x, WIx)

+2(x, W 2 W) + (w, W 3 w)} dt. (28)

Thus A is the cost associated with (x, 0). Thus, if A is the least positive value for which

the boundary value problem (22)-(23) has a solution (x, t) with the corresponding denom-

inator of (15) being positive, then x must be an optimal trajectory. 01

If the system and weighting matrices are functions of a finite number of parameters,

these parameters can be varied to maximize X. In Section 2, since the system matrices and

the weighting matrices depend on A, b, C, and b, an optimization routine needs to be

employed with respect to these quantities to maximize A.

10
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4. OPTIMALITY CONDITIONS FOR THE MAXIMIZATION OF A

We consider again the time-invariant H. problem. In this section, we derive a con-

dition that needs to be satisfied when A is maximized. For this, consider equations (14)

and (15). Note that for the standard H, problem of Section 2, the system and weighting

matrices depend on A, B, C, and D. These constitute the set of independent variables.

The variations in the system and weighting matrices can be explicitly expressed in terms

of variations in A, B, C, and D. However, the optimality conditions are extremely compli-

cated ;o derive in such a case. The derivation can be simplified a little by assuming that

.D22 = 0 (see (3)). However, we only attempt to derive the basic optimality conditions

here.

Consider equations (22) and (23). Let A = A - BV' 1V2, = BV3"B*, and C =

VI - V 2V'V*. Suppose A,B,C, and b maximize A. Let b,,, and &) denote

elemental perturbations in A, B, C, and D respectively. Also, denote the corresponding

perturbations in A, B, , x, ii', and A by bA, bb, e, xi, 01, and p respectively. Note that if

A is a maximum, p = 0. Thus, we have the following set of equations.

i= Ax + b, (29)

tk=x-A*O, (30)

x(to) = O(T) =0, (31)

=Ax, + !bk + bAx + bbt, (32)

1= Cx 1 - A i + x -&4A*, (33)

x1 (to) = 0 1(T) = 0. (34)

From (33), we have

I T
x* di {x*xi - x*A*obi + x*ex - x*bAO) di. (35)

11
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Also, by an integration by parts

J x* jdt=- {X*A'¢ 1 + o'Bo1 } dt. (36)

Rom (35) and (36),

- ,P*bo dt = {x*Cx, + x&'x - x&4^i } dt. (37)

From equation (30)

Cx=k + A . (38)

Note that C" - C. Substituting (38) in (37) and integrating by parts, we get

2 x*fAtkdt+ 0*,&0dt-jx * xdt=0. (39)

The above equation needs to be satisfied for all elemental perturbations in A, B, C,

and d.

5. A NUMERICAL EXAMPLE

As an example we consider the tracking problem given in [2]. The plant is given by

s-i
P(s) s- (40)

s(s -2)*

The tracking error signal is r - v. The weighting filter W(s) in Fig. 3 (p. 18) is given by

s+l
W(s) = 80s + 1 (41)

The objective in [2) was to choose K1 (s) and K 2(s) such that the Hoo-norm of the transfer

function from w to v is minimized. Our objective in this section is to synthesize u using

the theory of this chapter such that the minimum of

10w2(t)d(42)

f I{f - v) 2 + u2 } dt

12
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is maximized.

Converting the plant equations to state space form, we have

.i = -. 1I- +w

.i2 =U

3 = 2X3 + U (43)

r = .1w + .09XI

v = .5z 2 + .5X3.

The matrices corresponding to equation (3) are given by

A= 0 0 0) B = (0 B 2 =

S 00 2

c = ( .0 -. 5 -. 5;) , C2 09  0 )0 0 ( .50.
DII(1 ) D12 = 0, D21 = ".1 1 (2= 0).

The matrices F and H are chosen such that A + B 2F and A + HC2 are stable. The

choice is the same as that in [2] and is given by

F=(0 .5 -4.5), H= 0 )

Assume that Q(s) is described by the three dimensional system
=Aq + f ,

(44)
U2 + bg.

Let x = (x, z 2 X3 )*. Then the state equations for the finite-interval H.. problem

become

= (A - B 2DC2)z + B2(F + bC 2)i - B2 q + (B, - B 2DD 21)w, (45)

= (A + HC2 + B2F + B2bC 2)& - (HC 2 + B 2D)C2 )X

-BA2 q - (HD21 + B 2DD 21 )w, (46)

=q + BIC2 (z - i) + bD 2 1w, (47)

13
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with the initial conditions being zero. The performance index is

f 0 w2 dt

o { (.1w + .09XI - 5x - )2 (48)
+[Fi - (eq + bC 2x - bC 2 X + bD 2iw)]2 5

Assuming values for A, B, C, D, we can find A using the theory given in Section 3.

Let i4 11 112) be the transition matrix corresponding to (22). Satisfaction of (23)Let = 21 4D22)

gives rise to the condition that det(4 2 2 (10)) = 0. Thus A is found by making use of a sign

change of det(4D22(10)) over a range of values of A. In our numerical experiments, much of

the computer execution time was consumed by the calculation of A for a given controller.

Efforts are under way to make the computation of A more efficient.

The transition matrix 4(10) was found in this case using the following formula [13].

Let h = 10/2'. Represent the system matrix in (22) by M. Then

4(10)= [I- 1hM + 1h2M2]1 [I+ hM+ h2m 2 28. (49)

Using the above procedure, we can iterate on A, B, C, and D to maximize A. Note that
28

once 4(h) is calculated, only eight repeated squarings are needed to evaluate {$(h)}.

Initially the following values were assumed for the control matrices:

A= -2 0 ,f -1 1 6=(1 1 1), =(1 1).
0 0 -)1 -1)

Using the Rosenbrock hill climbing algorithm [14], the elements of the matrices were varied

to maximize A. The algorithm usually leads to only local maxima. Note that Q(s) is stable

if and only if A is stable. This was not introduced as a constraint in the optimization

algorithm since the unconstrained run yielded a stable A. The Fortran program was run

on a Zenith Z-248 personal computer in double precision using the Microsoft Optimizing

Compiler Version 4.01. A local maximum of A = 14.8 was obtained for the following values

14
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of A, B, C, and D:

1-2.04 .318 .023 .945 9.973
A= [-.026 -1.632 -. 028 -0 Bi -10

-. 052 .358 -2.054 .946 -1.056)
C=(.944 1.48 1.018), D= (.986 41.92).

After several runs with various initial values for A, B, C, and D, the value of Am.x = 14.8

could not be bettered.

The two compoents of Q(s) are given by

.986(s + 3.26)(s + 2.03)(s + .75)
Qi(s)= (s + 1.68)(s2 + 4.05s + 4.1) (

Q2(S) = 41.92(s + 2.04)(s2 + 5.04s + 6.58)

(s + 1.68)(s2 + 4.05s + 4.1)

It was reported in [2] that Q2(s) is unconstrained and may be taken as zero. To

simulate this condition, we set the second columns of the optimal B and b equal to zero.

The first positive value of A for which det(022(10)) changed sign in this case was still

observed to be 14.8.

A few comments on tie numerical method are in order. Since the computation of A

consumes most of the execution time, further research needs to be done to find an alternate

method to evaluate A more accurately and efficiently. Also, the value of A is evaluated

in the above example by starting with an initial value and incrementing it in steps of 0.2

until a change in the sign of the determinant is observed. Thus the exact value of A differs

from the computed value by at most 0.2. This sort of inaccurate evaluation of A may

prematurely terminate the optimization routine which seeks to maximize A.

6. CONCLUSIONS

A design methodology for the synthesis of finite-interval Ho, controllers is presented

using state-space methods. Using observer-based controller parametrization, an optimiza-

tion problem is formulated. A measure of performance for a given controller is defined
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in terms of the least value of a parameter occurring in a two-point boundary value prob-

lem. Optimality conditions for finding the measure of performance for a given controller

are given. The optimization problem seeks to maximize the measure of performance. An

example is given.

Note: This chapter is based on a paper which will appear in the AIAA Journal of

Guidance, Control, and Dynamics under the same title.
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III. Model Reduction with a Finite-Interval

H.. Criterion

1. Introduction

Model reduction is an important problem in the case of airplanes with significant

aeroservoelastic dynamics. The original model in such cases is of high order and thus, the

resulting controller will have a complex structure, especially if it uses full state feedback.

Also for highly augmented aircraft with flight and propulsive controls, it is useful to develop

low order models to analyze flying qualities.

If the aim is to design a low order controller for a high order plant, there are at least

three broad approaches to achieve this. A general account of these three approaches is

given in [1]. The so called direct design methods assume a stabilizing controller of fixed

degree and seek to find the controller that maximizes a quadratic performance index ( see

12,3]).

Another approach is to get a high order controller by some design technique, such as

LQG or H ,, and then to approximate the high order controller by a low order one which

possesses certain desirable properties. This approach is the subject matter of [1] and the

pertaining literature is referenced in that paper.

The third approach is to approximate the high order plant by a low order one. Then

a low order controller is designed and used to control the original plant. In this chapter

we concentrate on this approach and consider the problem of approximating the original

plant by a low order model in an optimal sense. This problem has been treated recently
by several researchers under a variety of approximation criteria and we refer the reader

to [4] for the relevant references. Although no computational results are given, [4] gives a

sufficient condition which characterizes reduced order models satisfying an optimized L 2

bound as well as a prespecified Hoo bound. The reduced order model is expressed in terms

of solutions of four coupled algebraic Riccati equations.

19



NADC-90043-60

We now state the main problem. For the sake of generality, we pose it for time-varying

systems. Let the plant be described by

=p = A,(t)xp + B,(t)u, zp(to) = 0, (1)

yp = C,(t)xp + D,(t)u, (2)

where x,(t), u(t), and yp(t) denote the plant state vector, the control vector, and the plant

output vector respectively. Let the reduced order model which approximates the plant be

chosen to be

im = Am(t)xm + Bm(t)u, Xm(to) = 0, (3)

ym = Cm (t)xm + Dm(t)u, (4)

where xm(t) and !/m(t) denote respectively the state vector and the output vector of the

reduced order model.

For given Am(t), Bmn(t), Cm(t), and Dm.(t), let u be chosen such that the correlation

index given by ft -'(t)R(t0 (t at

fT (yp - ym)*Q(t)(yp - y.) dt

is minimized. The superscript * denotes matrix or vector transpose. Let this minimum

value be denoted by A. Thus u represents the worst input and A gives a measure of the

worst-case correlation between the plant output and the model output. The problem is to

choose Am(t), B.(t), Cm(t), and D,.(t) such that A is maximized.

Since (5) represents the ratio of weighted signal energy to weighted error energy, the

above problem may be regarded as a modified H.. problem except for a few differences.

We consider time-varying systems and in our case the interval of control is finite. There

are extensions of the Ho, results to the finite-interval time-varying case [4). However, our

approach is different and is based on considering the inherent two-point boundary value
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problem. Also, the general aim of H,, problems is the design of an optimal controller,

whereas in this chapter we are interested in the selection of model matrices. It is necessary

in our case to use nonlinear programming algorithms in order to select the model matrices

which maximize A. In [5-7], we derived some results which aid in the selection of a controller

which maximizes the worst-case performance. The results of [51 are presented in Chapter

2 and these will be utilized in Section 2 of this chapter.

In the case of time-invariant systems, a nonlinear programming algorithm can be

used to find at least a local maximum of A. For the time-varying case, the matrices

A.(t),Bm(t),Cm(t), and Dm.(t) need to be expressed in terms of basis functions and a

nonlinear programming algorithm needs to be used to maximize A with respect to the

coefficients of the basis functions.

We do not require the plant and the model to be open loop stable. This is significant

since many of the modern aircraft have open loop unstable poles. We show in Section 4 by

means of examples that the method is indeed applicable to such cases. There is yet another

advantage of our method. One of the criticisms in the approach of getting a low order

model from a high order plant is that the satisfactory approximation of the plant requires

some knowledge in advance of the controller [1]. Since we maximize the correlation between

the plant and model outputs for the worst possible input, the correlation in the case of

any other controller is bound to be better. Thus, our method furnishes a satisfactory

approximation without requiring an a priori knowledge of the controller.

We now give a summary of the results of the chapter. In Section 2, conditions that

characterize the worst input are derived for a given model. A two-point boundary value

problem needs to be solved for the least positive A to obtain the worst-case correlation

between the outputs of the plant and the model. A nonlinear programming algorithm can

then be used to find the model matrices which maximize A.

The stability and control derivatives of aircraft are subject to variations and it is also

not possible to determine these exactly from wind tunnel data. There is already some
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interest in robust model reduction techniques [8]. In Section 3 we formulate a robust

model reduction problem and derive an expression for the variation of correlation between

the plant and model outputs as a functional of the variations in system parameters. This

value gives an idea of the robustness of the approximate model and can aid in the choice

of a reduced order model with a specified level of robustness.

In Section 4 some examples are worked out and details about the computational

algorithm utilized are given. Correlation between the plant and the model is shown via

time and frequency response plots. In order to keep the examples as simple as possible,

we do not consider the robust model reduction problem in the case of these examples.

Finally, certain conclusions are given in Section 5.

2. COMPUTATION OF A FOR A GIVEN REDUCED ORDER MODEL

Assume that the matrices Am(t), B.(t), Cm(t), and Dm(t) are given. In this section,

we characterize A as the minimum positive value for which a certain two-point bound-

ary value problem has a nontrivial solution. Also, we derive a computationally useful

characterization of A.

Letting

X* =(z; .)*, (6)

Y = Y,-Y, (7)

A(t)= A ,, 0 (8)

B(t) B(9)

C(t) =( CP -CM ), (10)

and

D(t) = Dp - Dm, (11)
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we can write (1)-(4) as

= A(t)x + B(t)u, x(to) = 0, (12)

y = C(t)x + D(t)u. (13)

The correlation index given by (5) can be put in the form
f1r u-(t)R(t)u(t) dt

J(U) = T w u} (14)
ft IXWIX+ X*W2Uu*W dt

The problem is to characterize u(t) that minimizes (14).

Let A = infu J(u). We assume that for all t, R(t) - AW 3(t) is invertible, and

R(t) >_ 0, (15)

(W 1 (t) W2 (t) >0. (16)
w (t) W3(t) ) 0

Equations (15) and (16) guarantee that the numerator and denominator of (14) are non-

negative for any u. The necessary conditions that characterize the worst input can be

stated as follows.

THEOREM 2.1. Consider the system given by (12)-(14). Hf u(t) minimizes the correlation

index given by (14), then there exists an adjoint vector O(t), not identically zero, such that

d = -A* -AWIx - AW 2u, O(T) = 0, (17)

with

u(t) = (R - AW 3)-'f{B' + \w2X}. (18)

Proof. For a proof, see Theorem 3.1 of Chapter 2.

Let

A = A + AB(R - AW)-W2, (19)

= B(R - ,W 3)-'B ", (20)

and
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--- - w - A2W2(R - AW3) -W 2 . (21)

Thus, we have a two-point boundary value problem given by

(W) ( -A*) ) (22)

with

z(to) = 0, O(T) = 0. (23)

The following theorem follows from Theorem 3.2 of Chapter 2.

THEOREM 2.2. Let (z, 4') satisfy the boundary value problem given by (22) and (23)

for the least positive A such that f2U x'Wix + z'W 2 u + u*"W3u) dt > 0, where u =

(R - AIV3) -1 {B*Ok - AW 2 x}. Then A is the minimum value of the index given by (14) and

u is the worst input.

In [5] and [6], a computational technique which utilizes the transition matrix associated

with (22) is given. This technique is also presented in Chapters 2 of this report. In this

chapter we use an alternate technique. This technique is more stable numerically. The

theory behind the technique is given below.

Let iD(t, r) be the transition matrix associated with (22). Then we have

-(T) T +to)(T+to to) X(to)) (24)O(T) 2 2 ON,--i- --- , ¢t) I

Let

o-'(TT+to ) , 1C12 (25)
2 /(1(2

and

=to) - V12 • (26)
2 V2 1 V22

Multiplying (24) on the left by (25), we get

(11 (2 x()) =(vil V2)l('it))(7
( ( (T) k '21 V2 (27)
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Since z(to) = t(T) = 0,
Ciix(T) = v1120(to),

(28)
C2 ix(T) = z220(tO).

Since the equations in (28) are linearly dependent, (28) has a nontrivial solution for

b(to) and x(T) if and only if
det (11 v12 =0. (29)

Thus, we can characterize A as the least positive value for which (29) holds.

We can determine A by doing a search over a range of positive values and picking the

first value at which the determinant in (29) changes sign. We give more details on this in

Section 4.

3. ROBUST MODEL REDUCTION

In this section we formulate a robust model reduction problem. The aim is to choose

the best reduced order model under parameter variations. We derive an expression for

the variation in the correlation measure A in terms of variations in the system matrices.

For simplicity of analysis, we assume that D,(t) and Dmn(t) in (11) are zero, which makes

D(t) = 0.

Consider (1)-(10). The system equations are given by

i = A(t)z + B(t)u, x(to) = 0, (30)

Y = C(t)x. (31)

We can write (5) as
fto u*(t)R(t)u(t)dt(

fto z*-(t)C-(t)O(t)C(t)x(tOdt.

For given Am(t), Bm.(t), and C,(t), let A be the minimum of the correlation index

in (32) over u(t). Let the elemental variations in A,(t), B,(t), and Cp(t) be denoted by
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bAp(t), bBp(t), and Cp(t) respectively. Let M(t), 6B(t), and C7(t) be the variations in the

matrices A(t), B(t), and C(t) corresponding to the elemental variations &4,(t), fB,(t), and

&2p(t). Notice that

&4(t) = MAO(t  0) (33)

6B(t) = 0 (34)

and

6CMt = ( CP(t) 0) (35)

Let p denote the variation in A caused by 6A, &B, and 6C. Now the robust model

reduction problem can be stated as follows.

Robust model reduction problem. Find Am(t), Bm(t), and Cm(t) such that

fT lu*Ru dt
f T 'R dt (36)
ftol*C*QCxdt

is maximized with the side constraint

Ip/Al __ ,o for all 116A(t)II < a(t), 11B(t)II < b(t), and IIC(t)II < c(t), (37)

where a(t), b(t), and c(t) are suitably chosen.

We now derive an expression for p in terms of 6.(t), B(t), and &C(t). For given

Am(t), Bm (t), and Cm(t), let u minimize the index in (32). In the following, we suppress

the dependence of the matrices on t for simplicity of notation. From (19)-(23), we get the

following boundary value problem which needs to be satisfied by the corresponding pair

(X,¢).

. = Ax + BR-'B*O, (38)

= -AC*QCx - A*,¢, (39)
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x(to) = Ob(T) = 0. (40)

Let x, and 01 represent the variations in x and tib due to 64, 6B, and 8C. FRom (38)-

(40), we have the following equations satisfied by x, and ifb1.

i= Ax, + £4 x + BRl'B*?kil + (BR 1 6B* + WB R 1'B*)t, (41)

= -,uC*QCx - \(6C*QC + C*Q6C)x - \C*QCxl - Aitbi - WO, (42)

xi(to) = 0 1 (T) = 0. (43)

Theorem 3.1. Consider (38)-(43). Then the variation in \ is given by

j ~ ~ xr 1 dt = *QxdiAJ x *C+ C*Q6x dt

go TI x*C*QCx iITA idi-Jx£*dt (44)
fto 2

Also, by an integration by parts and by (38), (40), and (43),

I T TT
i ,xt 1 dt ISO ]X*Atfi d -] it0 k*BRB*k1 di. (46)

Since

x*(tCQC + C*Q6V)x di = 2 J~X*C*Q6C x dt, (47)

from (45) and (46), we get

pf' x'CQCxdt +2,I x*'. dt
Jto '

+ A I' x*C'QCxi di+f J~ b'Od=f OPBR-1B-tfijdt. (48)
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From (39),

Aj ft zC*QCxi dt = - ( + A')*, d. (49)

Integrating the first term of the integrand from the right side of (49) by parts, and using

(40) and (43), we get

T T T

A f 0XC*QCxl dt = *&A x dt + 0  *BR- B*pi dt

+ f'*(BR-IM* + 6 R-'B*) dt. (50)

Incorporating (50) in (48) and using the fact that

T ~.TL *(BR-IB* + W.5 R-B*)O dt =2 tb*BR-l6B ;b dt, (51)

we get (44). 0

Using (44), the variation in the correlation measure A owing to parameter variations

can be computed for any given A,,(t),Bm(t), and Cm(t).

4. NUMERICAL EXAMPLES

In this section we consider only time-invariant examples. The systems in the examples

can be put in the form

Ax + Bu, z(o) = 0, x* = (x; )* (52)

with the correlation index
foT f u*Rudt(

L 2rxC~ i (53)
a(u) = f x*C*QCx dt'

where A,B, and C are given by (8)-(10). For given A., B,,, and C., let A = inf. J(u).

To recap the procedure for finding A, let

F ( A BR-'B*) (54)
-,C QC -A '
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and

exp( -)= (FT VII V12 (55)
2 V21 V2 2 1

-FT (11 (12 (56)2 ((21 (22)"

From (29), A is given by the first positive value for which

(e (11 V12) 0. (7
(e ,(21 V22 (:

Now we iterate on the matrices Am, Bin, and Cm using a nonlinear programming algorithm

to maximize .

There are two primary computational algorithms that are needed to use this method

of model reduction. They are a nonlinear global optimization routine to maximize A and

a relatively fast routine to compute A. Currently A is determined by finding the smallest

positive value for which (57) holds. Due to the oscillatory nature of the value of the

determinant as a function of \, for suitable weighting matrices in (53), A was originally

calculated starting with an initial value of A = 0.1 and incrementing by 0.2 until the

determinant in (57) changed sign. While this method yielded accurate results, it also used

excessive amounts of computational time.

To speed this process up, two modifications were made. First, A was incremented by

large steps until the value of the determinant was less than a percentage of its initial value.

At this point, small increments in A were applied until the determinant changed sign. This

technique was successful in this case because the absolute value of the determinant never

increased beyond a very small fraction of its initial value after the first zero crossing. The

second modification was adaptively scaling down the input weighting matrix R so that the

values of A were consistently in the range of 10 to 20. This modification gives large enough

values for accuracy and small enough values to decrease computational time.

The second necessary algorithm is a nonlinear global optimization routine. We are

still in the process of developing an algorithm which satisfies both speed and accuracy
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requirements. For now, however, two methods were used to test our theory. For Example

1, we used a deterministic tunneling technique [9]. This technique in our case starts with a

modified version of the Rosenbrock constrained hill climbing algorithm [10], searches for a

better point than the current local maximum, and then restarts the hill climbing algorithm

from there. While this method did converge to the global maximum, it also required an

excessive number of iterations. The method used for Example 2 was a multi-start hill

climbing algorithm with the starting point chosen by truncating the original system as

well as by other model reduction techniques. This method will in general not converge

to the global maximum without an excellent starting point, but it will find a good local

maximum for a decent starting point.

The Rosenbrock hill climbing algorithm and the algorithm to compute A were written

in PC-MATLAB and run on a Zenith Z-248 personal computer.

Example 1. Simple illustrative examples

We will first show the reduction of a stable second order system and an unstable

second order system. The system is of the form

i, = APx, + Bu, xp(0) = 0, (58)

Y, = CPX, (59)

where AP 0 ~ l, for the stable case, and A. 0 ( 1 f~)or the unstablewhreA ""-10 -11) (10 -9

case.The other matrices are B,= ()and C,=(1 0).

Our first order model equations are

im = amxm + bmu, xm(0) = 0, ym = CmZm. (60)

The weighting matrices in (53) are R = .01, Q = 1, and the final time T is taken to be 2

seconds. Our optimization technique is the aforementioned tunneling algorithm.
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In the stable case, the initial values were am = -1, bm = 1, and cm = 1. The value of A

increased from an initial value of 3.4 to a maximum of 16.8. The final reduced order model

is given by am. = -. 7485, b,, = .0944, and cm = .9. In the unstable case, the intial values

were am 1, bm = 1, and c.. = 1 and the final values are given by am = .9505, b,, = .0812,

and c. = 1.1119. In this case, the value of A increased from 2.8 to a final maximum of

17.4.

The time responses to a step input are given in Figs. 4 and 5 (p. 37). A comparison of

the time responses shows excellent correlation between the plant and model outputs. The

frequency responses are also well matched, at least up to 10 rad/sec. These can be seen in

Figs. 6 and 7 (p. 38). Divergence in the frequency responses is to be expected, since no

low order model can match the frequency response of the high order plant at sufficiently

high frequencies.

Example 2. Aircraft with structural modes

In this example, an eighth order plant will be reduced into a fourth order system. The

plant is the longitudinal system of the Advanced Supersonic Transport (AST) along with

the two lowest frequency structural modes [11]. The structural modes are the first and

second fuselage bending modes. The system is of the form

ip = APXp + Bpu, x,(0) = 0, (61)

= CP,, (62)

XP =ev q xi il X2 i2)* (63)

U= ( 6 c ,)" (64)

where the matrices A., Bp, and Cp are given in Table 1. In (63), the variables on the

right side are, respectively, perturbed speed, angle of attack, pitch angle, pitch rate, first

fuselage bending mode, its derivative, second fuselage bending mode, and its derivative.
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The quantities on the right side of (64) are the control inputs from the elevator, throttle,

canard, and elevon, respectively. The flight condition is supersonic cruise at Mach 2.5.

The units for the airspeed are ft/sec, and the angles and the control surface deflections are

in degrees.

We attempted to reduce this to a fourth order system given by

im = Amxm + Bu, xM(0) = 0, (65)

I,,n = CMx, (66)

Xm = (V a e q)* (67)

Table 1 Plant matrices of the AST longitudinal system

-0.0127 -0.0136 -0.0360 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0969 -0.4010 0.0000 0.9610 19.5900 -0.1185 -9.2000 -0.1326
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

Ap -0.2290 1.7260 0.0000 -0.7220 -12.0200 -0.3420 1.8420 0.8810
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.1204 0.0000 0.0496 -44.0000 -1.2740 -4.0300 -0.5080
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.1473 0.0000 0.3010 -7.4900 -0.1257 -21.7000 -0.8030

0.0000 0.0194 0.0000 0.0000
-0.0215 0.0000 -0.0040 -1.7860
0.0000 0.0000 0.0000 0.0000

-1.0970 0.0000 0.3660 -0.0569
BP 0.0000 0.0000 0.0000 0.0000

-0.6400 0.0000 0.1625 -0.0370
0.0000 0.0000 0.0000 0.0000

-1.8820 0.0000 0.4720 -0.0145

(1 0 0 0 0 0 0

cp= 0100000
0 0 1 0 0 0 0)
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Note that in this case, A is a function of 48 independent variables and the matrix F

in (54) is of dimension 24 x 24. The exponentials in (55) and (56) were evaluated using

the built-in matrix exponential routine of PC-MATLAB. We observed that because of the

large numbers involved, it is best not to invert the matrix in (55) to get the matrix in (56),

but to compute it directly using the built-in routine. We ran the multi-start hill climbing

a'gorithm with three different starting points, viz., with the truncated system matrices, and

with the reduced order matrices from [11], which were obtained by balancing and spectral

decomposition. The final time T was taken to be 5 sec, the weighting matrix Q was the

identity matrix, and the weighting matrix R was selected as the diagonal matrix with all

diagonal entries equal to 0.001. Although all the three runs yielded local maxima for A, we

obtained the best value of A with the initial matrices obtained by spectral decomposition.

In this case, the value of A increased from 2.6 to 36.3. The resuting reduced order model

is characterized by

-0.0112 -0.0023 -0.0258 -0.0003
Am = -0.1248 -0.4222 0.0139 0.8712 (68)

m -0.2817 0.0142 0.0152 1.0198

-0.2862 1.7511 -0.0032 -0.6893)

0.0027 0.0215 0.0013 -0.0005
Bm = 0.5117 0.0022 -0.1354 -1.8368 (69)

m -0.1422 0.0107 0.0449 0.0035
-1.0341 0.0054 0.3664 -0.0521)

/ 1.0427 0.0099 0.0035 0.0103

=M -0.1416 1.0082 0.0028 -0.0059 (70)
C= [-0.0047 0.0068 0.9932 -0.0006 (

-0.1852 0.0197 0.0128 1.0255

The original unaugmented plant has the short period eigenvalues at 0.6687 (unstable),

and -1.7755 (stable), the phugoid eigenvalues at -0.0151±iO.0886, the first fuselage bend-

ing mode eigenvalues at -0.7257 ± i6.7017, and the second fuselage bending mode eigen-

values at -0.3122 ± i4.4484. The eigenvalues of A. are given by -0.0046, -0.0232,0.7113,

and -1.7910. The correlation between the plant and model outputs is excellent in the
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chosen interval, and this can be seen from Figs. 8-11 (p. 39,40), where the responses to an

elevator step input are plotted.

Even though this example has weakly coupled flexible and rigid body modes, it re-

vealed another interesting feature. A comparison of the frequency responses in [11] using

spectral decomposition and balancing demonstrated the superiority of the spectral decom-

position method in this case. As a comparison, in Table 2, we list the initial and final

values of A with starting points obtained from the truncated system matrices, balancing,

and spectral decomposition. It can be observed from Table 2 that spectral decomposition

gives the best initial and final values for \.

Table 2 Values of A with different starting points

Initial A Maximum A

Truncation 0.1 2.0

Balancing 0.3 3.3

Spectral decomposition 2.6 36.3

While the starting point obtained from the spectral decomposition method gave the

best value for the correlation measure, an improvement in the value of A can be seen for all

the starting points. This suggests another use of our method. Using our algorithm, we can

fine-tune the reduced order models obtained by some other model reduction methods. We

are currently developing an optimization algorithm utilizing certain characteristics of A as a

function of the reduced order model parameters. It is hoped that these characteristics will

allow us to overcome the problems associated with the large number of local maxima and

the sharp rise in the value of A near the global maximum. Global optimization algorithms

currently being considered include stochastic search methods [9], methods of global increase

such as simulated annealing [9,12], and methods of improvement of local maxima such as
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tunneling [9].

As is mentioned at the beginning of this section, a vast amount of computation time

was used up in the evaluation of A for given reduced order model matrices. An important

topic for further research is to devise an alternate method for the efficient evaluation of A.

Also, our evaluation of A is only accurate to within the specified incremental step size of

A and this may lead to premature termination of the optimization routine that seeks to

maximize A.

5. CONCLUSIONS

In this chapter, we presented a technique for reduced order modeling with a modi-

fied H, optimality criterion. A characterization for the determination of the correlation

between plant and model outputs is given. Also the problem of robust model reduc-

tion is addressed and an expression for the variation of correlation with plant parameter

variations is derived. Nonlinear programming algorithms were utilized to reduce the lon-

gitudinal flexible-body model of an Advanced Supersonic Transport. Further work needs

to be done to devise a suitable global optimization algorithm.
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